Titanium IV oxide, also known as titanium dioxide, is a popular and versatile compound that is used in various industries. It is a white pigment and is commonly found in products such as sunscreen, paints, food coloring, and even in some medications. This versatile compound has unique properties that make it an essential ingredient in many products.
A dense, white, opaque pigment composed of a mixture of Zinc sulfide (30%) and Barium sulfate (70%) with trace amounts of Zinc oxide. Lithopone, first produced in 1874, was called Orr's white. The mixture of the two components is so intimate that it is hard to distinguish microscopically. Lithopone is an inert, transparent pigment which is often used as a filler or as a base for lake pigments. Lithopone was widely used in house paints in the first half of the 20th century. It was also used for some artist grounds, inks and as a filler in Paper, Leather, and Linoleum. Now lithopone has mostly been replaced by Titanium dioxide.
Titanium dioxide (TiO2) is a multifunctional semiconductor that exists in three crystalline forms: anatase, rutile, and brookite. Owing to an appropriate combination of physical and chemical properties, environmental compatibility, and low production cost, polycrystalline TiO2 has found a large variety of applications and is considered to be a promising material for future technologies. One of the most distinctive physical properties of this material is its high photocatalytic activity (Nam et al., 2019); however, more recently it has attracted growing interest because of its resistive switching abilities (Yang et al., 2008).
The aim of this work was to examine particularly the Degussa P25 titanium dioxide nanoparticles (P25TiO2NPs) because they are among the most employed ones in cosmetics. In fact, all kinds of titanium dioxide nanoparticles (TiO2NPs) have gained widespread commercialization over recent decades. This white pigment (TiO2NPs) is used in a broad range of applications, including food, personal care products (toothpaste, lotions, sunscreens, face creams), drugs, plastics, ceramics, and paints. The original source is abundant in Earth as a chemically inert amphoteric oxide, which is thermally stable, corrosion-resistant, and water-insoluble. This oxide is found in three different forms: rutile (the most stable and substantial form), brookite (rhombohedral), and anatase (tetragonal as rutile), of these, both rutile and anatase are of significant commercial importance in a wide range of applications [3]. Additionally, the nano-sized oxide exhibits interesting physical properties, one of them is the ability to act as semiconducting material under UV exposure. In fact, TiO2NPs are the most well-known and useful photocatalytic material, because of their relatively low price and photo-stability [4]. Although, this photoactivity could also cause undesired molecular damage in biological tissues and needs to be urgently assessed, due to their worldwide use. However, not all nanosized titanium dioxide have the same behavior. In 2007, Rampaul A and Parkin I questioned: “whether the anatase/rutile crystal form of titanium dioxide with an organosilane or dimethicone coat, a common titania type identified in sunscreens, is appropriate to use in sunscreen lotions” [5]. They also suggested that with further study, other types of functionalized titanium dioxide could potentially be safer alternatives. Later, Damiani found that the anatase form of TiO2NPs was the more photoactive one, and stated that it should be avoided for sunscreen formulations, in agreement with Barker and Branch (2008) [6,7].
In an early study Jani et al. administred rutile TiO2 (500 nm) as a 0.1 ml of 2.5 % w/v suspension (12.5 mg/kg BW) to female Sprague Dawley rats, by oral gavage daily for 10 days and detected presence of particles in all the major gut associated lymphoid tissue as well as in distant organs such as the liver, spleen, lung and peritoneal tissue, but not in heart and kidney. The distribution and toxicity of nano- (25 nm, 80 nm) and submicron-sized (155 nm) TiO2 particles were evaluated in mice administered a large, single, oral dosing (5 g/kg BW) by gavage. In the animals that were sacrificed two weeks later, ICP-MS analysis showed that the particles were retained mainly in liver, spleen, kidney, and lung tissues, indicating that they can be transported to other tissues and organs after uptake by the gastrointestinal tract. Interestingly, although an extremely high dose was administrated, no acute toxicity was observed. In groups exposed to 80 nm and 155 nm particles, histopathological changes were observed in the liver, kidney and in the brain. The biochemical serum parameters also indicated liver, kidney and cardiovascular damage and were higher in mice treated with nano-sized (25 or 80 nm) TiO2 compared to submicron-sized (155 nm) TiO2. However, the main weaknesses of this study are the use of extremely high single dose and insufficient characterisation of the particles.